25 research outputs found

    Behaviour analysis in binary SoC data

    Get PDF

    A digital video system for observing and recording occultations

    Full text link
    Stellar occultations by asteroids and outer solar system bodies can offer ground based observers with modest telescopes and camera equipment the opportunity to probe the shape, size, atmosphere and attendant moons or rings of these distant objects. The essential requirements of the camera and recording equipment are: good quantum efficiency and low noise, minimal dead time between images, good horological faithfulness of the image time stamps, robustness of the recording to unexpected failure, and low cost. We describe the Astronomical Digital Video occultation observing and recording System (ADVS) which attempts to fulfil these requirements and compare the system with other reported camera and recorder systems. Five systems have been built, deployed and tested over the past three years, and we report on three representative occultation observations: one being a 9 +/-1.5 second occultation of the trans-Neptunian object 28978 Ixion (mv=15.2) at 3 seconds per frame, one being a 1.51 +/-0.017 second occultation of Deimos, the 12~km diameter satellite of Mars, at 30 frames per second, and one being a 11.04 +/-0.4 second occultation, recorded at 7.5 frames per second, of the main belt asteroid, 361 Havnia, representing a low magnitude drop (Dmv = 0.4) occultation.Comment: 9 pages, 5 figures, 3 tables, accepted to Publications of the Astronomical Society of Australia (PASA

    Verifying timestamps of occultation observation systems

    Full text link
    We describe an image timestamp verification system to determine the exposure timing characteristics and continuity of images made by an imaging camera and recorder, with reference to Coordinated Universal Time (UTC). The original use was to verify the timestamps of stellar occultation recording systems, but the system is applicable to lunar flashes, planetary transits, sprite recording, or any area where reliable timestamps are required. The system offers good temporal resolution (down to 2 msec, referred to UTC) and provides exposure duration and interframe dead time information. The system uses inexpensive, off-the- shelf components, requires minimal assembly and requires no high-voltage components or connections. We also describe an application to load FITS (and other format) image files, which can decode the verification image timestamp. Source code, wiring diagrams and built applications are provided to aid the construction and use of the device.Comment: 10 pages, 7 figures, accepted to Publications of the Astronomical Society of Australia (PASA

    Microbial diversity in the digestive tract of two different breeds of sheep

    Get PDF
    Aims: This work aims to determine the factors which play a role in establishing the microbial population throughout the digestive tract in ruminants and is necessary to enhance our understanding of microbial establishment and activity. Methods and Results: This study used Terminal Restriction Fragment Length Polymorphism (TRFLP) to investigate the microbial profiles of 11 regions of the digestive tract of two breeds of sheep (Beulah and Suffolk). TRFLP data revealed that the regions of the digestive tract were highly significantly different in terms of the composition of the bacterial communities within three distinct clusters of bacterial colonisation (foregut, midgut and hindgut). The data also show that breed was a significant factor in the establishment of the bacterial component of the microbial community, but that no difference was detected between ciliated protozoal populations. Conclusions: We infer that not only are the different regions of the tract important in determining the composition of the microbial communities in the sheep, but so too is the breed of the animal. Significance and Impact of Study: This is the first time that a difference has been detected in the digestive microbial population of two different breeds of sheep

    A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    Get PDF
    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability

    Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep

    Get PDF
    Stefan Hiendleder is a member of the International Sheep Genomics ConsortiumIn sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.Michael P. Heaton, Theodore S. Kalbfleisch, Dustin T. Petrik, Barry Simpson, James W. Kijas, Michael L. Clawson, Carol G. Chitko-McKown, Gregory P. Harhay, Kreg A. Leymaster, the International Sheep Genomics Consortiu
    corecore